A DTA STUDY OF PHENOLS II. Methyl-, methoxy- and methyl, halo-phenols

N. G. Buckman*, J. O. Hill** and R. J. Magee***

*PERKIN ELMER PTY LTD, P.O. BOX 216 GLEN WAVERLEY, VICTORIA 3150, AUSTRALIA **DEPARTMENT OF CHEMISTRY, LA TROBE UNIVERSITY, BUNDOORA, VICTORIA 3083, AUSTRALIA ***DEPARTMENT OF CHEMISTRY, THE UNIVERSITY OF MALAYA, PENTAI VALLEY, 59100 KUALA LUMPUR, MALAYSIA

(Received May 17, 1990)

A comprehensive DTA study is reported of eight methyl-phenols, 4-methoxy-phenol and four methyl-halo-phenols and of the corresponding p-nitrobenzoylchloride, 3,5-dinitrobenzoylchloride and p-phenylazobenzoylchloride derivatives, prepared 'in situ' by heating intimate mixtures of phenol and acid chloride in a DTA system. The thermal analysis data, in particular, the derivative formation temperatures, are interpreted in terms of the inductive, mesomeric and steric effects associated with the ring substituents of the phenol and acid chloride and the extent of inter- and intramolecular hydrogen-bonding existing in these systems. The DTA data collectively, provide a comprehensive data base for the identification and characterisation of these phenols via DTA.

A DSC study by Crandall and Pennington [1] of phenol, resorcinol and eugenol and of the corresponding *p*-nitrophenylbenzoate derivatives, suggested that phenols in the solid state can be characterised via 'in-situ' derivative formation in a thermal analysis system. This postulate was extensively tested and reported as Part 1 of a detailed DTA study [2] of phenols a series of halo-phenols were characterised via a DTA study of the individual phenols together with the 'in-situ' formation of the corresponding *p*-nitrobenzoylchloride (*p*-NBC), 3,5-dinitrobenzoylchloride (3,5-dNBC) and *p*-phenylazobenzoylchloride (*p*-PABC) derivatives.

The second part of this comprehensive study is reported here as a DTA study of eight methyl-phenols, 4-methoxy-phenol and four methyl-halophenols and of the corresponding p-NBC, 3,5-dNBC and p-PABC derivatives. The thermal analysis data, and in particular, the derivative formation

> John Wiley & Sons, Limited, Chichester Akadémiai Kiadó, Budapest

temperatures (T_D), are interpreted in terms of phenol acidity, steric effects associated with the phenol and acid chloride ring substituents and second order effects related to inter- and intramolecular hydrogen bonding of the phenol and the relative extent to which these cumulative factors influence the degree of phenol/acid chloride interaction.

Experimental

The source of phenols and acid chlorides, the DTA system used, the sample presentation procedures and the data analysis procedures with respect to DTA curve analysis and peak assignments, have been fully described in Part 1 [2]. The Hot Stage Microscopy system, used to confirm derivative melting points, has also been described [2].

Results and discussion

The DTA profile analysis data for eight methyl-phenols and 4-methoxy phenol and the corresponding p-PABC, p-NBC and 3,5-dNBC derivatives are recorded in Table 1. Similar data for four methyl-halo-phenols are recorded in Table 2. All transitions are endothermic except when specifically identified as exothermic (EXO). These data collectively constitute a comprehensive data bank for the subsequent characterisation of these phenols by DTA. For the quick identification of these phenols, the melting points of the various methyl-phenols and methyl-halo-phenols and of the corresponding p-PABC, p-NBC and 3,5-dNBC derivatives are summarised in Tables 3 and 4 respectively.

Interpretation of the various peaks in the DTA profiles of these phenols is generally in accordance with the sequence: mp of phenol, mp of acid chloride, derivative formation (T_D) , derivative mp and derivative decomposition [2]. Such an interpretation was facilitated in all cases, by confirmation of derivative mp by Thermal Optical Analysis.

Such a sequence of events is illustrated by the DTA peak definition temperature data for the *p*-NBC derivative of 3,4-dimethyl-phenol, as given in Table 4. Depressed melting points of the phenol and acid chloride occur at 43° and 50° respectively, followed by derivative formation at 76° ($T_{\rm D}$), derivative melting at 123° and derivative endothermic decomposition at 182° . In some cases, the individual melting points of the components are not identifiable, as for example, for the 2,4,6-trimethylphenol-*p*NBC derivative.

Phenol	_	Peak d	efinition temperatu	res, °C
		onset	peak	offset
2,6-dimethyl-	parent	44	49	62
		83	157	167
	p-PABC	-	-	
	p-NBC	-	-	-
	3,5-dNBC	31	42	46
		46	50	56
		95	120sh	
			*161	168
		168	179	194
3,4-dimethyl-	parent	54	63	69
		99	152	168
	p-PABC	51	55sh	
			62	70
		70	86	90
		94	1 06	120
		130	171	211
	p-NBC	34	43	45
		45	50	62
		62	76	88
		115	*123	135
		148	182	198
	3,5-dNBC	40	42	45
		45	56	67
		80	98	106
		170	* 186	1 95
		209	263	289
3,5-dimethyl-	parent	56	64	72
	_	100	177	195
	p-PABC	52	57sh	
			64	71
		71	81	92
		92	* 109	125
		125	163	189
		194	284	311
	p-NBC	36	44	46
	-	46	53	
			sh66	71
		86	113sh	
			139	159
	3.5-dNBC	50	54sh	

 Table 1 Peak definition temperatures for methyl- and methoxy- phenols and the corresponding p-PABC, p-NBC and 3,5-dNBC derivatives

BUCKMAN et al.: A DTA STUDY OF PHENOLS

Phenol	_	Peak	definition temperatur	res, °C
		onset	peak	offset
			64	74
		77	87	103
		165	*197	213
		245	260	286
2,5-dimethyl-	parent	66	75	89
		107	160	175
	p-PABC	51	61sh	
			73	
			sh85	91
		91	•99	107
		107	113	122
		122	132	183
	p-NBC	20	38 .	47
		47	53	
			sh76	80
		80	•91sh	
			122	141
	3,5-dNBC	43	44	49
		56	68	78
		83	98	119
		129	1 40	153
		180	201	238
2,3-dimethyl-	parent	66	75	87
		107	161	171
	p-PABC	56	59	65
		65	68	
			sh91	95
		117	135	151
		151	163	197
	p-NBC	28	43	
			sh56	
			sh85	94
		124	146	150
		168	EXO Drift	
	3,5-dNBC	43	44	50
		58	70	80
		94	107	129
		157	170	19 2
		197	232	251
2,4,6-trimethyl-	parent	59	69	82
		99	156	171
	p-dNBC	54	58	63

Table 1 Continued

J. Thermal Anal., 36, 1990

Phenol		Peak	definition temperatur	es, °C
		onset	peak	offset
		63	76	90
		90	99	107
		119	* 139	177
		192	221	234
	p-NBC	44	63	80
		83	108	120
		120	*148	177
		177	EXO Drift	
	3,5-dNBC	44	54	64
		64	73	81
		87	134	139
		139	* 154	173
		180	194	216
2,3,5-trimethyl-	parent	85	96	112
· -	-	120	180	198
	p-PABC	66	72sh	
	-		80	
			sh92	108
		120	[*] 138	149
		154	164	198
	p-NBC	35	44	57
	•	57	65	80
		80	96sh	
			*145	151
		170	196	218
	3.5-dNBC	41	49	58
	·	58	66	80
		100	115	
			* 167	176
		204	234	250
3,4,5-trimethyl-	parent	99	108	126
	•	132	197	215
	p-PABC	70	77sh	
	•		84	
			sh86	112
		112	•149	
			165	191
		191	210	229
	p-NBC	30	43	58
	•	58	72	
			sh74	91
		139	1 64	194

Table 1 Continued

J. Thermal Anal., 36, 1990

Phenol		Peak definition temperatures, °C		
	-	onset	peak	offset
		226	291	306
3,4,5-trimethyl-	3,5-dNBC	53	61	72
		76	87	90
		90	93	106
		123	145	154
		171	213	264
4-methoxy-	parent	50	56	75
		115	194	212
	p-PABC	47	58	65
		73	76sh	
			80	102
		110	*125	134
		134	149	160
	p-NBC	41	55	
	-		sh61	73
		149	*171	191
		215	286	302
	3,5-dNBC	36	57	71
		71	84	104
		125	•146	
			164	179

		^ · · ·
Table	L	Continued

sh shoulder

Derivative melting point (confirmed by Hot Stage Microscopy)

Additionally, in this case, the final decomposition process is not well defined.

The peak definition temperature data (Tables 1 and 2) relating to the decomposition of the parent phenols, give an indication of the relative thermal stability of these systems. For the methyl-phenols, it is apparent that as the number of methyl substituents on the phenol increases, the thermal stability of the phenol increases. For example, 3,4,5-trimethyl-phenol decomposes at 197° whereas 3,4-dimethyl-phenol decomposes at 152°. A single methoxy group enhances thermal stability, since 4-methoxy-phenol decomposes at the relatively high temperature of 194°. Thus, it appears that as a general trend, the thermal stability of a phenol is enhanced by electron donor ring substituent groups.

In the general context of the interpretation of DTA data for phenols, Salman *et al.* [3, 4] have revealed an interesting correlation between fusion and decomposition enthalpies of orthosubstituted phenols, as derived by DTA,

Phenol		Peak de	finition temperatu	ares, °C
		onset	peak	offset
4-chloro-2-methyl-	parent	26	45	59
		78	167	193
	p-PBC	32	45	60
	-	70	84	93
		107	120	
			•145	161
		198	213	226
	p-NBC	-	-	-
	3,5-dNBC	31	42	49
	,	49	58	69
		102	146sh	
			*162	201
		201	227	249
4-chloro-3-methyl	parent	59	65	80
·j-	1	165	208	221
	n-PABC	44	56	
	P		sh70	80
	EXO Drift to	87.94	120	132
	2.1 0.11110	132	158	181
		251	282	311
	n-NBC	20	45	64
	P	98	138	145
		145	*166	172
		172	187	210
	3 S-dNBC	31	42	210 40
	5,5-unde	40	58	69
		112	154ch	07
		110	*173	101
		201	227	240
I-bromo 3.5-dimethyl-	narent	101	112	107
4-010m0- <i>3,3-</i> dimetnyi-	parent	101	201	224
	n-PARC	67	76	22 4 20
	PIADC	80	00	00 106
		107	70 102	100
		132	*162	130
		130	202	1/4
	-NPC	414 34	171 A5	504
	p-mbc	34 51	4J 52	51
		31 120	JJ 140-1	00
		120	14USA *1 <i>77</i>	100
			1//	198

Table 2 Peak definition temperatures for methyl halophenols and the corresponding p-PABC, p-NBC and 3,5-dNBC derivatives

Phenol		Peak definition temperatures, °C		
		onset	peak	offset
		198	241	265
	3,5-dNBC	46	57	66
		81	9 0	98
		135	156	164
		164	•180	189
		205	243	291
4-chloro-3,5-dimethyl-	parent	101	114	130
		140	205	220
	p-PABC	71	86sh	
			95	107
		119	121	129
		154	•167	182
		184	200	214
	p-NBC	38	48	54
		54	56	69
		111	138	
			•179	201
		258	287	299
	3,5-dNBC	55	60	67
		82	90	103
		122	154	160
		166	* 186	198
		211	261	302

T	able	2	Continu	eđ

sh shoulder

Derivative mp confirmed by Hot-stage Microscopy

with the degree of intramolecular hydrogen bonding in these systems. Since hydrogen bonding effects associated with phenols directly influence the acidity of these systems, such a quantitative correlation is of importance in, the rationalisation of DTA data related to phenol derivatives.

As a preliminary to a detailed interpretation of the T_D data (Tables 1, 2) for the various phenol derivatives studied, it is relevant to briefly discuss the chemistry of these systems in terms of the intramolecular electronic effects operating [5].

The ease of derivative formation, which is essentially reflected in the magnitude of T_D , is dependent on the relative acidic and basic strengths of the acid chloride and phenoxide ion respectively. Thus, derivative formation is directly favoured by electron releasing ring substituents of the phenol and electron withdrawing ring substituents of the acid chloride. This primary in-

teraction is impeded by steric effects of ring substituents in the 2 and 6 positions of each moiety. Also, intra- and intermolecular hydrogen-bonding effects associated with the phenol and intermolecular phenol/acid chloride hydrogen-bonding impede derivative formation.

Phenol	Melting point, °C					
	Parent	p-PABC	p-NBC	3,5-dNBC		
2,4-dimethyl-	27	111 ^a	102 ^b	164 ⁶		
2,6-dimethyl-	49			161 159 ^b		
3,4-dimethyl-	62.5	106 104 ^a	123	186 182 ⁶		
3,5-dimethyl-	64	109 105 ^a	113 109 ⁶	197 195 ^Ե		
2,5-dimethhyl	74.5	99 96 ^a	91 87 ⁶	140 137 ^b		
2,3-dimethyl-	75	135	146	170		
2,4,6-trimethyl	69	139	148	154		
2,3,5-trimethyl-	96	138	145	167		
3,4,5-trimethyl-	108	149	164	145		
4-methoxy-	56	125	171	146		

Table 3 Melting points of methyl- and methoxy- phenols and of the corresponding derivatives

^a From Ref. [6]

^b From Refs [7-9]

Table 4 Melting points of methyl, halo-phenols and of the corresponding derivatives

Phenol	······································	Melting	point,°C	
	Parent	p-PABC	p-NBC	3,5-dNBC
4-chloro-2-methyl-	45	145	-	162
4-chloro-3-methyl-	65	158	166	173
4-bromo-3,5-dimethyl-	113	162	177	180
4-chloro-3,5-dimethyl-	114	167	179	186

With respect to a particular methyl-phenol or to 4-methoxy-phenol, the general trend in corresponding derivative formation temperatures (T_D) , (Table 1), is: p-NBC<p-PABC<3,5-dNBC. The corresponding trend for methyl-halo-phenol derivative formation temperatures (Table 2) is p-PAB<p-NBC< 3,5-dNBC. These trends are simply a reflection primarily of the cumulative electron withdrawing ability of the acid chloride based upon the nature of the ring substituents and their associated steric effect.

With respect to the derivative formation ability of methyl-phenols, the associated methyl ring substituents primarily reduce the acidity of the phenol, and those phenols with methyl ring substituents at the 2 and 6 positions exert an additional steric effect. For example, the overall decreased acidity effect is shown by $T_D = 76^\circ$ for the 3,4-dimethyl-phenol-pNBC derivative and $T_{\rm D} = 66^{\circ}$ for the 3,5-dimethylphenol-pNBC derivative. The effect is sufficiently refined to reveal that a methyl substituent in the 4 position is more effective in reducing phenol acidity than one in the 5 position. Further, a methoxy group is more effective in reducing phenol acidity than a methyl group, as shown by T_D of 80° and 86° for the 4-methoxy-phenol and 3,4dimethyl-phenol-pPABC derivatives respectively. However, a halo ring substituent coupled with a methyl ring substituent appears also to give a net reduction in phenol acidity, which is explained in terms of the halo ring substituent preferentially promoting phenol intermolecular hydrogen bonding. This effect is revealed by the T_D data (Table 2) for 3,4-dimethylphenol and 4-chloro-3-methyl-phenol-pNBC derivatives ($T_D = 76^\circ$ and 120° respectively).

Phenol	а	Derivativ	mperature	
	pKa	p-PABC	p-NBC	3,5-dNBC
3,5-dimethyl-	10.20	81	66	87
4-methoxy-	10.21	80	61	84
3,4,5-trimethyl-	10.25	84	74	93
3,4-dimethyl-	10.36	86	76	98
2,5-dimethyl-	10.41	85	76	98
2,3-dimethyl-	10.54	91	85	107
2,3,5-trimethyl-	10.59	92	96	115
2,4,6-trimethyl-	10.89	99	108	134

Table 5 pK_a data for methyl- and methoxy- phenols and T_D data for the corresponding derivatives

^a From Refs [10-12]

Although the electronic and steric effects associated with the phenol and acid chloride produce a net sinergistic effect, it appears that phenol acidity is the dominant effect on derivative formation and this is qualitatively revealed by the pK_a/T_D , relationships shown in Figs 1 and 2. Essentially, as phenol acidity decreases, T_D increases. However, those phenols which exhibit a pronounced primary steric effect, are not in conformity with the trend, as revealed by the pKa/T_D data (Table 5) for 3,4,5-trimethyl-phenol and 2, 4, 6-trimethylphenol and the corresponding pNBC derivatives.

Phenol	а	Derivative formation temperature $T_{\rm D}$, °C		nperature
	pKa	p-PABC	p-NBC	3,5-dNBC
4-chloro-3-methyl-	9.55	120	138	154
4-chloro-3,5-dimethyl-	9.70	119	133	151
4-chloro-2-methyl-	9.71	120	•	146

Table 6 pK_a data for methyl, halo-phenols and T_D data for the corresponding derivatives

^a From Refs [10-12]

Fig. 1 pK_a/T_D relationships for methyl- and methoxy-phenol systems

Fig. 2 pK_a/T_D relationships for methyl, halo-phenol systems

J. Thermal Anal., 36, 1990

Thus, in summary, it is apparent that the cumulative peak definition temperature data (Tables 1, 2) relating to these phenols and the corresponding derivatives, can be adequately rationalised in terms of the inductive, mesomeric and steric effects inherent in these systems.

References

- 1 E. W. Crandall and M. Pennington, J. Chem. Educ., 57 (1980) 824.
- 2 N. G. Buckman, J. O. Hill and R. J. Magee, J. Therm. Anal., 36 (1990) 289.
- 3 T. Schaefer, S. R. Salman and R. Sabastian, Canad. J. Chem., 62 (1984) 113.
- 4 S. R. Salman and K. F. Abas, Thermochim. Acta, 149 (1989) 381.
- 5 S. Patai, Ed., 'The Chemistry of the Hydroxyl Group', Part 1, Wiley-Interscience, N. Y., 1971 Ch.7.
- 6 E. O. Woolfolk and J. M. Taylor, J. Org. Chem., 22 (1957) 827.
- 7 N. D. Cheronis, J. B. Entrikin and E. M. Hodnett, 'Semimicro Qualitative Organic Analysis', 3rd Edn., Wiley-Interscience, N. Y. 1965.
- 8 A. I. Vogel, 'Textbook of Practical Organic Chemistry'. 4th Edn., Longman, N. Y. 1981.
- 9 M. Phillips and G. L. Keenan, J. Amer. Chem. Soc., 53 (1931) 1924.
- 10 E. P. Serjeant and B. Dempsey, IUPAC Chemical Data Series No 23: 'Ionisation Constants of Organic Acids in Aqueous Solutions', Pergamon Press, N. Y. 1979.
- 11 P. J. Pearce and R. J. J. Simkins, Canad. J. Chem., 46 (1968) 241.
- 12 G. Körtum, W. Vogel and K. Andrussow, Pure and Appl. Chem., 1 (1960) 187.

Zusammenfassung — An durch Erhitzen inniger Mischungen aus Phenol und Säurechloriden in einem DTA-System hergestellten acht Methylphenolen, an 4-Methoxyphenol, an vier Methylhalophenolen und an den entsprechenden p-Nitrobenzoylchlorid-, 3,5-Dinitrobenzoylchlorid- und p-Phenylazobenzoylchloridderivaten wurden ausführliche DTA-Untersuchungen durchgeführt. Thermoanalytische Ergebnisse, insbesondere die Bildungstemperatur der Derivate wurden als Ausdruck des induktiven, mesomeren und sterischen Effektes bezüglich der Substituenten am Phenolring und des Säurechlorides sowie des Ausmaßes der in diesem System existierenden inter- und intramolekularen Wasserstoffbrückenbindungen gewertet. Die Gesamtheit der DTA-Daten ist gleichzeitig eine ausführliche Datenreferenz zur Identifizierung und Charakterisierung dieser Phenole mittels DTA.